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Outline 

• Radiators for advanced propulsion 

 

• Materials for radiators 

 

• Modeling and testing novel radiator 
materials 

 

• Results to date 

 

• Conclusions and Future Work 
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Nuclear Electric Propulsion (NEP)  

NASA’s Target Power Level: 100kWe 



4 Mechanical & Industrial Engineering 

• Radiation is the only heat rejection mechanism to 
space (no conduction/convection) 

• Waste heat depends on  

− Power level  

− Thermal efficiency of the engine 

• Amount of heat rejection per unit area of radiator 

− Cold-side temperature, T 

− Environmental temperature, Tenv 

− Surface emissivity, ε 

Heat Rejection 
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Why are better radiators required? 

• To Date: 

− Previous propulsion methods did not require large 
radiators: 

• Chemical rockets reject most heat with the exhaust gas 

• Electric propulsion systems have used solar power, 
which does not require much heat rejection  

− Low temperature heat rejection <100°C  

− Existing radiator designs don’t meet NASA’s areal density 
goal for NEP of 2-4 kg/m2 

• Goals: 

− Decrease areal density 

− Increase capabilities 

• High temperature applications 

• Damage tolerance  extended lifespan 
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1. Decrease fin areal 
density  

2. Increase fin emissivity 
(but already1) 

3. Increase cold-side 
temperature 
(decreases the fin 
area) 

4. Reduce thermal 
resistances at 
interfaces 

Radiator Mass Reductions 

Even a small increase in efficiency 
can have a significant impact for a 

component this large 
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Typical Fin Constructions 

Structural 
Panel 

Wrapped Fin 
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Fin Material  

High Temperature 

Tolerance 

(Want HIGH) 

Axial Thermal 

Conductivity 

(Want HIGH) 

Density 

(Want LOW) 

Aluminum  Low Moderate Low 

Stainless Steel Moderate Low Moderate 

Molybdenum  High Moderate High 

Carbon-Carbon 

Composite High Moderate Low 

Carbon-Polymer 

Composite Low Moderate Moderate 

Bare Carbon Fiber High High Low 

Fin Material Comparison 
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Materials 

2/8/2013 9 
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Thermal Conductivity of Carbon Materials 

Measured Axial/In-Plane Thermal Conductivity at 
Room Temperature (300K) [W/(m-K)] 

Graphene Sheet 3080–5300  

Carbon Nanotube (CNT)   

Single-Walled (SW)      3500  

Multi-Walled (MW)   3000  

SW-CNT Bundles   1750-5800 

Diamond 2200 

Carbon Fiber 600-1500  

Natural Graphite 130  

CNT Cloth 40, 250 (600°C)  

CNT "As-Grown" Mat 35  

Carbon 
Fiber 

Carbon Nanotube 

Graphene 

Image: [67] 
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Materials Used in Test 

IR image of 
carbon fibers 
with a heater 
temperature 

of 600°C. 

IR image of 
carbon nanotube 

cloth with a 
heater 

temperature of 
600°C. 

IR image of 
oriented CNT 

composite (Dennis 
Tucker) with a 

heater 
temperature of 

600°C. 
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(a) An unstretched composite sheet with wavy nanotubes 
and microscale porous structure and (b) a composite sheet 
stretched by 12%, showing straight, well-aligned and 
closely-packed nanotubes.[*] 

(a) (b) 

*X. Wang, Z. Z. Yong, Q. W. Li, P. D. Bradford, W. Liu, D. S. Tucker, W. Cai, H. Wang, F. G. 
Yuan & Y. T. Zhu (2012):      Ultrastrong, Stiff and Multifunctional Carbon Nanotube 
Composites, Materials Research Letters,         DOI:10.1080/21663831.2012.686586 
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Fin Material Comparison 
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Fin Geometry Optimization 

600°C 
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• Test artice: Inconel 718 pipe, TiCuSil braze, 
Mitsubishi KI3C2U (pitch) carbon fiber 

• Evaluate basic fin performance and component 
compatibility 

• Verify imaging capabilities 

• Validate basic model 

Preliminary Tests 
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Model Progress 

• May campaign: good qualitative fit 

 

 

 

 

 

• But tfit = 2.5 X tmeas :  

  widthdensity

length
mass

tmeas










Experiment 
Model 
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Unshielded Fin 

• Each element of the fin is heated by direct 
radiation from the tube, as well as by conduction 
along fin. 

• Analytic calculation shows radiation from tube is 
about 9.8W/m of width, vs. conduction about 7.4 
W/m. 

• Total heat transfer is sum of radiation and 
conduction. 

• Apparent thickness would be 2.3 X measured. 

• Discrepancy between model and experiment 
explained. 
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Shielded Fin 

• Isolate conduction along fin 

• Water-cooled copper heat shields added. 

 

Shields 
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Lessons from Comparison of Model and Experiment 

• Quantitative agreement between model and 
experiment for best samples, shielded fins. 

• Large variability in temperature distribution in IR 
images, particularly for irregular samples. 

− Need very controlled sample geometry 

− Braided fiber specimens? 
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Woven carbon fiber manufacturing pathfinder,  

made at MSFC from Mitsubishi K13D2U  

high-conductivity carbon fiber.   

This article is approximately 30 cm x 3 and  

contains 30 tows, approximately 90,000  

carbon fibers. 

Commercial 

unidirectional 

carbon 

structural 

fiber 

First 

generation 

article 

brazed 

from 

individual 

tows. 

Woven High-conductivity Carbon Fiber 
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Facilities / Components 
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Generic Heater  
Setup 

Vacuum Braze Facility Sample Braze 

Latest Version of Heat source for Radiator and Braze Facility 
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Shielding Fins 

• Isolate conduction along fin 

• Water-cooled copper heat shields added. 

 

Shields 
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Future Work 

• Increase the upper operating temperature 

 

• Quantify device performance  

 

• Assess the potential of such devices and 
materials to meet NASA’s needs for high-
temperature radiators for spacecraft 

 

• Recommend further refinement and 
characterization of similar devices 
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Questions 
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BACKUP SLIDES 
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Radiators are an Essential Cross Discipline 
Supporting Technology 

• TA02 In-Space Propulsion Systems 

Supporting technologies… 

2.4.4 Heat Rejection 

Heat rejection is a key supporting capability for several in space propulsion systems. Some 
examples include rejection of the waste heat generated due to inefficiencies in electric 
propulsion devices …  In general the key heat rejection system metrics for in-space 
propulsion are cost, weight, operating temperature, and environmental durability (e.g. 
radiation, MMOD).[1] 

• TA03 Space Power and Energy Storage 

5.3. Additional / Salient Comments from the NRC Reports 

To place the priorities, findings and recommendations in context for this TA, the following 
quotes from the NRC reports are noteworthy:…. “Fission: Nuclear reactor systems can 
provide relatively high power over long periods of time. … Other components have 
reached higher TRLs in past programs such as the SP-100 and Prometheus programs, but 
technology capability has been lost and must be redeveloped. Key subsystems that must 
be addressed include … heat transfer, heat rejection....”[3] 

• TA14 Thermal Management Systems 

2.2.3.1. Radiators 

Radiator advancement is perhaps the most critical thermal technology development for 
future spacecraft and space-based systems. Since radiators contribute a substantial 
portion of the thermal control system mass. For example, the Altair (Lunar Lander) 
vehicle radiator design represents 40% of the thermal system mass. Radiators can be 
subdivided into two categories; the first is for rejection at temperatures below 350 K and 
the second is for nuclear or high power systems at temperatures around 500 K.[2] 
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Stated Goals 

• A test bed facility and methods for quantification of the 
performance of radiators made from novel materials 

• Demonstration of fabrication methods for novel radiators 
• A validated predictive model to support future design and 

analysis efforts 
• Quantification of device performance/assessment of 

potential. 
• Identification of refinements to improve the model and 

device design. 
• Model validation against the experimental results 
• Integrate modeling efforts with the test efforts  so that test 

data can be used to anchor and validate the existing model 
• Assessment of the potential of such devices to meet NASA’s 

needs for high-temperature radiators for spacecraft 
• Recommendations for further refinement and 

characterization of similar devices 
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• The use of carbon fibers for the radiator material. 
• The fabrication and testing of several sub-scale test 

articles. 

• The quantitative agreement between modeled and 
experimental temperature distribution.   

• The design and construction of a heater 
arrangement that isolates the conductive properties 
of the samples from the radiative effects of the 
heat pipe. 

• The construction of a vacuum brazing facility for 
attaching the carbon based fibers to the heat pipe 
simulator.  

Accomplishments 
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• A test bed facility and methods for 
quantification of the performance of 
radiators made from novel materials. 

• Identification of refinements to improve 
the model and device design 

• Demonstration of fabrication methods for 
novel radiators. 

• A validated predictive model to support 
future design and analysis efforts. 

• Model validation against the 
experimental results. 

• Integrate modeling efforts with the test 
efforts  so that test data can be used to 
anchor and validate the existing model. 

• Quantification of device 
performance/assessment of potential. 

• Assessment of the potential of such 
devices to meet NASA’s needs for high-
temperature radiators for spacecraft. 

• Recommendations for further refinement 
and characterization of similar devices. 

• The design and construction of a 
heater arrangement that isolates 
the conductive properties of the 
samples from the radiative effects 
of the heat pipe. 

• The construction of a vacuum 
brazing facility for attaching the 
carbon based fibers to the heat 
pipe simulator. 

• The use of carbon fibers for the 
radiator material. 

• The fabrication of sample radiator 
fins. 

• The fabrication and testing of 
several sub-scale test articles. 

• The quantitative agreement 
between modeled and 
experimental temperature 

distribution.   

Stated Objectives Accomplishments 

Score Card 



Importance of Model  

The model is the link between the 
experiments and the flight radiator.  

If we can model the experiment 
accurately, then we can make a 
quantitative prediction of the 

performance of a flight radiator. 

34 

It is through the model that we transform what is measured (temperature 
distribution along the sample, areal density, mass, etc) and what we know 

about the material (emissivity, thermal conductivity, etc.) into a useful 
measure in a full scale model of radiative power/mass, possibly turndown 

ratios(very much environment dependent), and anything else used to 
measure radiator efficiency, keeping four metrics in mind, mass of the 
radiator, operating temperature, environmental durability, and cost. 
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Motivation: Farther & Faster Space Exploration 

Image: [21] 
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Objectives 

NASA’s Objective:  Increase efficiency 
and capabilities of deep-space travel 

Improved Propulsion:  

Increase power-to-mass & speed 

Promising Propulsion Option:  

Nuclear-Electric Propulsion (NEP)  

Required Technology for NEP: 

Improved Heat Rejection 

“Radiator 
advancement is 
perhaps the most 
critical thermal 
technology 
development for 
future spacecraft 
and space-based 
systems.” -NASA 

S.A. Hill, et. al., “Draft Thermal Management Systems Roadmap, Technology Area 14,” NASA Office of the Chief Technologist, November, 2010. 

 



37 Mechanical & Industrial Engineering 

Potential Propulsion Energy Sources 

U235 H2+O2 

7 OOM 

x 50 = 

S.L.Rodgers, “Propulsion Research Center.” Proceedings of the Workshop on Materials Science for Advanced Space Propulsion, Huntsville, Alabama, October 9-10, 2001. 
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Thruster Comparison 

Chemical 

Electric Electrostatic 

D.M. Goebel, I. Katz.  “Fundamentals of Electric Propulsion: Ion and Hall Thrusters.” Jet  Propulsion Laboratory California Institute of Technology, March 2008. 
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Heat Transport System Evolution 

• Pumped (1970’s-1980’s) 

− Vulnerable: one pipe failure causes system failure 

− High pumping power required 

• Heat Pipe (1990’s-present) 

− Independent heat pipes decrease vulnerability 

− 2-phase system quickly transports heat far from source 
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Current Work 

Evaluating bare carbon fiber fin material as a high 
performing alternative to metals and composites 
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Proposed Carbon Fiber Radiator Fin  

• Replace metal and composite fins with carbon 
fibers bonded directly to heat pipe 

• Eliminate matrix & align majority of fibers normal 
to heat pipe axis for maximizing thermal 
performance 

• Radiation from top and bottom surfaces 

Fiber 
  

x x 

y 

Thickness 

Length 

Fin Symmetry  Line 
Heat Pipe 

y 

Thickness 

Length 

Thickness 

Length 

Heat Pipe 
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Preliminary Tests 
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Predicting Fiber Mat Emissivity 

•
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40 Fibers in the Array, 5000 Rays per Simulation, Fiber Emissivity: top line is 0.9, middle line is 0.8, bottom line is 0.7

Effective Emissivity Results 

Maximum due to multiple 
scattering within fiber array 

Effective emissivity approaches 
individual fiber emissivity 
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Fin & Tube Space Radiator Designs Examples 

• International Space Station (ISS) 

− Deployable radiator influenced many subsequent designs 

− Implemented, in-use 

• Space Power 100kW (SP-100) 

− High-temp, fission power application 

− Designed, not implemented – program ended in 1994 

• Jupiter Icy Moon Orbiter (JIMO) 

− NEP application 

− Designed, not implemented – program ended in 2005 

• Fission Surface Power (FSP) 

− Fission power application 

− On-going research  
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ISS Radiators 

• Operating temperature 
100°C 

• Panels: 

− Aluminum facesheets 

− Aluminum honeycomb filler 

− Inconel tubes 

− Emissive ceramic coating 

• Pumped ammonia heat 
transport system 

• Scissor deployment 
mechanism 
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SP-100 Radiators 

• Operating temp. 
600°C 

• Main fluid loop: NaK 

• C-C composite panels 

• Heat Pipe: 
− Niobium-Zirconium  

 shell & wick 

− Potassium fluid  
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• Operating temperature: 100°C 

• Main fluid loop: NaK 

• Carbon fiber composite panels 

• Titanium-water heat pipes 

• Scissor deployment 

JIMO Radiators 
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FSP Radiators 

• On-going work on nuclear fission energy for Lunar & 
Martian outposts 

• Continuation of JIMO radiators: 100 °C operating temp., 
carbon-polymer panels, Ti-water heat pipes, emissive 
coating 

• Demonstration panels 
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Nuclear Fission Reactor 

• Core: fuel elements & working fluid 

• Nuclear fission chain reaction:  

1. The nucleus of an atom is struck by a 
neutron and becomes unstable  

2. Nucleus splits apart in an exothermic 
reaction releasing kinetic energy of 
fission products, gamma radiation, 
and free neutrons 

3. The heat is absorbed by surrounding 
media and the free neutrons initiate 
subsequent reactions   

• Heat of reaction absorbed by working 
fluid and delivered to the hot-side of 
the power generator 

 Image: [11] 
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Space Nuclear Reactors 

SNAP-10A 

Images: [64,24] 

* * 

*Designed but not implemented 
 

Total No. Vehicles: ~37 Russian & 1 US 
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• Dynamic 
− Thermodynamic cycle 

− Brayton, Stirling: single-phase 

− Rankine: 2-phase 

− Moderate efficiency  

    (15-30%) 

− Typ. lower-temp. 

• Static 
− No moving parts 

− Thermoelectric, Thermionic 

− Typ. low power 

− Low efficiency (1-10%) 

− High-temperature 

 

Power Generation Options 

S. Johnson. “Project Prometheus Two-Phase Flow, Fluid Stability and Dynamics Workshop.” NASA Technical Memorandum #212598 (2003).  
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Spacecraft with Electrostatic Propulsion 

• Numerous Earth-orbiting satellites 
(mostly Russian) 

• Deep Space 1 (1998, NASA, ion) first 
interplanetary probe to test EP with 
solar power 

• Hayabusa (2003, JAXA, ion) study  

    near-Earth asteroid 

•  SMART-1 (2003, ESA, Hall) orbit 

     Moon, ended with controlled collision 

• DAWN (2007, NASA, ion) investigate 

   evolution of small planetary bodies 
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Advanced Radiator Concepts 


